Exercise 1: Types of particles

Classify these substances as **atom**, **element**, **molecule**, **compound** or **ion**. Some substances may have more than one classification.

One mark per 🗸

[Total: 15]

Exercise 2: Formulae for elements

Write down the group (vertical column in the Periodic Table) to which these elements belong and their formulae.

Q	Name of element	Group	Formula	Mark
(a)	Potassium	1	K	
(b)	Nitrogen	5	N ₂	
(c)	Iodine	7	I ₂	
(d)	Zinc	Transition metal	Zn	
(e)	Xenon	0	Xe	
(f)	Sulfur	6	S	
(g)	Fluorine	7	F ₂	
(h)	Tin	4	Sn	
(i)	Tungsten	Transition metal	W	
(j)	Phosphorus	5	Р	

✓ One mark per correct row. Pay attention to the use of upper and lower cases, and subscripts.
 [Total: 10]

Exercise 4a: Formulae for ions

Write the formulae for the following ions, with the aid of a periodic table.

(a)	lithium ion	Li+	(k)	fluoride ion	F
(b)	magnesium ion	Mg ²⁺	(I)	oxide ion	O ²⁻
(c)	aluminium ion	Al ³⁺	(m)	nitride ion	N ³⁻
(d)	sulfide ion	S ²⁻	(n)	rubidium ion	Rb ⁺
(e)	hydride ion	H	(0)	manganese(II) ior	ⁿ Mn ²⁺
(f)	chromium(III) ion	Cr ³⁺	(p)	hydrogen ion	H+
(g)	barium ion	Ba ²⁺	(q)	lead(II) ion	Pb ²⁺
(h)	silver ion	Ag+	(r)	zinc ion	Zn ²⁺
(i)	strontium ion	Sr ²⁺	(s)	iron(III) ion	Fe ³⁺
(j)	bromide ion	Br⁻	(t)	phosphide ion	P ³⁻
√ 0ı	ne mark per ion: don't	forget ions	: have	e charges!	[Total: 20]

Exercise 5: Covalent compounds

Write the formulae for the following compounds.

(a)	carbon monoxide	CO
(b)	nitrogen dioxide	NO ₂
(c)	nitrogen triiodide	NI ₃
(d)	sulfur dichloride	SCl ₂
(e)	ammonia	NH ₃
(f)	silicon tetrachloride	SiCl ₄
(g)	phosphorus trichloride	PCI ₃
(h)	dinitrogen tetroxide	N_2O_4
(i)	ethanoic acid	CH ₃ COOH
(j)	carbon disulfide	CS ₂
(k)	methane	CH ₄
(I)	dinitrogen monoxide	N ₂ O

✓ One mark per compound: check that your answer is EXACTLY as given, with correct cases and subscripts!

[Total: 12]

Extension

Which famous British chemist links the last compound, a miner's safety lamp and potassium?

Sir Humphry Davy (1778 – 1829) – he worked extensively with N_2O (laughing gas), eventually becoming addicted; invented the Davy lamp used in mines to reduce the risk of methane explosions; and discovered potassium (and other Gr 1 and Gr 2 metals) by electrolysis.

Exercise 6a: Balancing equations

Balance these equations. Some of them are quite tricky, but there are *no* mistakes in the questions!

(a)	Na ₂ O	+	H ₂ O	\rightarrow	2NaOH		
(b)	2KCIO ₃	\rightarrow	2KCI	+	<mark>30</mark> 2		
(c)	2H ₂ O ₂	\rightarrow	2H ₂ O	+	O ₂		
(d)	3Fe	+	4H ₂ O	\rightarrow	Fe ₃ O ₄	+	$4H_2$
(e)	C ₂ H ₅ OH	+	<mark>3</mark> 0 ₂	\rightarrow	2CO ₂	+	3H ₂ O
(f)	(NH4)2 C	Cr ₂ O ₇	→	N ₂ -	⊦ Cr ₂ O ₃	+	4H ₂ O
(g)	Sn +	- 4H	INO₃→	Sı	nO2 + 4	4NO2 +	2H ₂ O
(h)	PCI ₅	+	4H2O	\rightarrow	H ₃ PO ₄	+	5HCI
(i)	2CuSO ₄	+ 4k	$XI \rightarrow$	2C	uI + 2	K2SO4	+ I ₂
(j)	PbO ₂	+ 4⊦	ICI →	Pb	Cl ₂ +	Cl ₂ +	2H₂O

 \checkmark One mark per equation correctly balanced.

[Total: 10]

Exercise 7a: Acid reactions

1. Fill in the blanks using the words given below – you may use each word once, more than once or not at all.

carbonate	chloride	chlorine	hydrogen
hydroxide	nitrate	nitride	oxygen
salt	sulfate	sulfuric	water

acid + metal **carbonate** \rightarrow **salt** + water + carbon dioxide

sulfuric acid + metal oxide \rightarrow metal sulfate + **water**

nitric acid + metal **hydroxide** \rightarrow metal **nitrate** + water

- metal + hydrochloric acid \rightarrow metal chloride + hydrogen
- ✓ One mark for each blank correctly filled

[Total: 8]

- 2. Each of the following equations contains at least one error or omission. Circle the mistakes and rewrite the equations correctly.
- (a) The reaction between aluminium hydroxide and hydrochloric acid
 - $AIOH_3 + 3HCI \rightarrow AI_3CI + 3H2O$
 - ✓ Missing bracket around OH
 - ✓ Error in formula for aluminium chloride
 - ✓ Formatting incorrect 2 should be subscripted

$AI(OH)_3 + 3HCI \rightarrow AICI_3 + 3H_2O$

(b) The reaction between potassium and sulfuric acid $K_2 + H_2SO_4 \rightarrow K_2SO_4 + 2H$ \checkmark Incorrect formula for a metal / error in writing numbers in balancing \checkmark Formula for hydrogen gas is $H_2!$

 $2K + H_2SO_4 \rightarrow K_2SO_4 + H_2$

(c) The reaction between sodium carbonate and nitric acid

 $na?Co_3 + H_2NO_3 \rightarrow naNO^3 + H_2O + CO_2$

3 formatting errors: the first letter of an element must be uppercase (applies to \checkmark Na and \checkmark O), \checkmark numbers in formulae must be subscripted.

Incorrect formula for \checkmark sodium carbonate and \checkmark nitric acid

✓ CO₂ missing as a product

Equation not balanced

$Na_2CO_3 + 2HNO_3 \rightarrow 2NaNO_3 + H_2O + CO_2$

(d) The reaction between ammonium hydroxide and sulfuric acid

 $Nh_3OH + H_2SO_4 \rightarrow Nh_3SO_4 + H_2$

- \checkmark The ammonium ion is $\rm NH_{4^+}$ errors in formatting and number of Hs
- ✓ Wrong formula for ammonium sulfate (charges not balanced)
- ✓ Wrong product water, not hydrogen

$2NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + 2H_2O \checkmark$

✓ One mark per point

[Total: 18]

Exercise 8: Significant figures

- Explain why 3.99521 to 3 sig figs is 4.00.
 The 4th figure is 5, so needs to round up.
 The 3rd figure is 9, so rounds up to 10; causing the 2nd figure to round up to 10 as well.
 This results in the first figure rounding to 4.
 The 2nd and 3rd figures are known to be zero.
 These "trailing zeros" are significant, hence 4.00 to 3sf.
- 2. To how many significant figures are the following quoted?

(a)	2048	4sf	(d)	0.00395	3sf
(b)	9.00043	6sf	(e)	0.05030	4sf
(c)	0.0008	1sf	(f)	650000	at least 2sf, but hard to be sure

3. Re-write the following to the number of significant figures required.

(b)	20543 (to 2sf)	21000	(e)	0.0056972 (to 3sf)	0.00570
(a)	5462 (to 2sf)	5500	(d)	0.039214 (to 3sf)	0.0392

- (c) 1.5952 (to 3sf) **1.60** (f) 470356 (to 3sf) **470000 or 4.70 x 10⁵**
- 4. Calculate the following to **an appropriate number** of significant figures.
- (a) 3.854 + 2.06 **5.91 (3sf)**
- (b) 6.52 2.7 **3.8 (2sf)**
- (c) 1.48 x 6.2 9.2 (2sf)
- (d) 19.5 ÷ 0.284 68.7 (3sf)
- ✓ One mark per answer to Q 2 4

[Total: 16]

Foundations in Chemistry

Exercise 9: Standard form

1. Write the following numbers in standard form to 3 significant figures.

(a)	123456	1.23 x 10 ⁵	
(b)	45062	4.51 x 10 ⁴	
(c)	0.058345	5.83 x 10 ⁻²	
(d)	0.000259631	2.60 x 10 ⁻⁴	
√ 0	ne mark per answer		[Total: 4]
2.	Write the following	numbers in longhand ("normal numbers	·").
(a)	1.36 x 10 ⁴	13600	
(b)	5.75 x 10 ⁻³	0.00575	
(c)	6.02 x 10 ²³	602 000 000 000 000 000 000 000	
(d)	1.60 x 10 ⁻¹⁹	0.000 000 000 000 000 000 160	
√ 0	ne mark per answer		[Total: 4]

3. The following values in metres link to the given quantities, but they have been mixed up. Rank them in order of size in the table overleaf, and then use them to complete the calculations that follow.

2.75 x 10 ⁻¹⁵	Length of a butane molecule
5.48 x 10 ⁻¹⁰	Radius of a bonded carbon atom
7.50 x 10 ⁻¹¹	Radius of a carbon nucleus
8.78 x 10 ⁻¹⁶	Radius of a proton

Size of particles </ Table correctly filled in

	-	-
Size	Value in metres	Quantity
Smallest	8.78 x 10 ⁻¹⁶	Radius of a proton
	2.75 x 10 ⁻¹⁵	Radius of a carbon nucleus
	7.50 x 10 ⁻¹¹	Radius of a bonded carbon atom
Biggest	5.48 x 10 ⁻¹⁰	Length of a butane molecule

Give your answers to these calculations to 3 significant figures.

- (a) The diameter of a bonded carbon atom. = 2 x radius = 2 x 7.50 x 10⁻¹¹ = 1.50 x 10⁻¹⁰ m ✓
- (b) The width of a carbon nucleus if the width of a proton is taken off. Width = diameter = $2 \times radius$ $(2 \times 2.75 \times 10^{-15}) - (2 \times 8.78 \times 10^{-16}) = 3.74 \times 10^{-15} \text{ m} \checkmark$
- Butane has the structure on the left below, whilst propane is on the right: (c)

Estimate the length of a propane molecule.

A propane molecule is a bonded C atom shorter than butane. 5.48 x 10^{-10} - (2 x 7.50 x 10^{-11}) = 3.98 x 10^{-10} m \checkmark

(d) The length of a butane molecule is equivalent to how many bonded C atoms lined up side by side?

 $\frac{5.48 \times 10^{-10}}{2 \times 7.50 \times 10^{-11}} = 3.65 \checkmark$

Why do you think this is less than the width of 4 bonded C atoms?

The actual arrangement of the atoms is not in a с н straight line, but in a zigzag, so the length from end to end is shorter.

✓ Sensible suggestion along these lines

[Total: 6]

Exercise 10: Rearranging algebraic equations

- Answers in blue. Applications (extension) in green.
- $moles = \frac{mass}{molar mass}$ (a) Find *mass* if $mass = moles \times molar mass$ Relates mass with amount of substance (moles)
- (b) Find volume if number of moles = concentration \times volume $volume = \frac{number \ of \ moles}{concentration}$

Relates amount of solute in a solution

(c) Find molar volume if $moles = \frac{volume}{molar volume}$

 $molar \ volume = \frac{volume}{moles}$

Relates gas volume with amount of gas

(d) Find ΔT if $Q = mc\Delta T$

$$\Delta T = \frac{Q}{mc}$$

Links heat released/absorbed in a reaction with temperature change

(e) Find
$$[H^+]$$
 if $K_a = \frac{[H^+][A^-]}{[HA]}$
 $[H^+] = K_a \times \frac{[HA]}{[A^-]}$

Shows the extent of dissociation of a weak acid

(f) Find [*HI*] if $K_c = \frac{[HI]^2}{[H_2][I_2]}$ $[HI] = \sqrt{K_c \left[H_2\right] \left[I_2\right]}$

K_c is the equilibrium constant for a reversible reaction.

(g) Find ΔH if $\Delta G = \Delta H - T \Delta S$

$$\Delta H = \Delta G + T \Delta S$$

Shows the relationship between ΔG (free energy change), ΔH (enthalpy change), ΔS (entropy change) and temperature, T.

(h) Find
$$\Delta S$$
 if $\Delta G = \Delta H - T\Delta S$
 $\Delta S = \frac{\Delta H - \Delta G}{T}$ As (g)

✓ One mark per rearrangement

[Total: 8]

Exercise 11: Maths quiz hints

Hints for how to handle this type of question:

- 1. Look carefully at the information given in the questions.
- 2. Use the **units** to help you decide what sorts of *quantities* you have been given, eg *amount* if the unit is mol, *volume* if the unit is cm³ or dm³, *concentration* if the units are mol dm⁻³. Label the quantities.
- 3. Look at the formulae provided and identify which to use you need the one for which you know 2 values and are asked to find the third.
- 4. **Rearrange** the formula for the variable you need, then substitute in the numerical values.

Exercise 11: Maths quiz

For each question, award

 \checkmark one mark for rearranging the equation correctly and substituting in the given values

 \checkmark one mark for the correct final answer to the appropriate number of sig figs.

[Total: 10]

A. Find the **amount**, in mol, of NaCl in 10.0g of NaCl, given its molar mass is 58.5 g mol⁻¹. Give your answer to 3sf.

We have the **mass** (10.0g) of NaCl, and its **molar mass** (58.5 g mol⁻¹), so we use equation \bigcirc to find **amount**.

 $amount = \frac{mass}{molar \ mass} = \frac{10.0}{58.5} = 0.1709401709$

...... **0.171 (3sf)** mol

B. Find the **volume**, in cm³, of 4.246 x 10⁻⁴ mol of a gas, given the molar volume is 24000 cm³ mol⁻¹. Give your answer to 4sf.

We have the **amount** (4.246 x 10^{-4} mol) and **molar volume** (24000 cm³ mol⁻¹) of a **gas**, so we rearrange equation @ to find the **volume**.

volume = *amount* × *molar volume*

 $= 4.246 \times 10^{-4} \times 24000 = 10.1904$

...... **10.19 (4sf)** cm³

C. A 0.330 dm³ can of Coke contains 0.102 mol sucrose. What is the **concentration**, in mol dm⁻³, of sucrose in this can of Coke? Give your answer to 3sf.

We have the **amount** (0.102 mol) and **volume** (0.330 dm³), so we rearrange equation \Im to find the **concentration**.

 $concentration = \frac{amount}{volume} = \frac{0.102}{0.330} = 0.3090909091$

..... **0.309 (3sf)** mol dm⁻³

D. 76.000 cm³ CO₂ was collected in an experiment at room temperature and pressure (RTP). The molar volume of any gas is 24000 cm³ mol⁻¹ at RTP. What is the **amount**, in mol, of CO₂ collected in this experiment? Give your answer in *standard form* to 5sf.

We have the **volume** of a **gas** (76.000 cm³) and its **molar volume** (24000 cm³ mol⁻¹), so we use equation @ to find the **amount**.

amount = $\frac{volume}{molar \ volume} = \frac{76.000}{24000} = 3.1666666667 \times 10^{-3}$

...... **3.1667 x 10⁻³ (5sf)** mol

Answer must be in standard form

E. A chemist needs 1.25×10^{-3} mol of KMnO₄ in an experiment. He has a solution of KMnO₄ of 2.25×10^{-2} mol dm⁻³ concentration. Calculate the **volume**, in dm³, of this solution he needs to 3sf.

We have the **amount** of solute $(1.25 \times 10^{-3} \text{ mol})$ and **concentration** $(2.25 \times 10^{-2} \text{ mol dm}^{-3})$ of a solution, so we rearrange equation ③ to find the **volume**.

 $volume = \frac{amount}{concentration} = \frac{1.25 \times 10^{-3}}{2.25 \times 10^{-2}} = 0.0555555556$

..... **0.0556 (3sf)** dm³

You will check your answers to F – J when you join us in September.

Prac: Observations exercise

Watch the video found on our HRChem channel on Youtube.

https://youtu.be/F-gspJFPzxo

Record your observations of the different reactions in the table below.

Expt	Observations	Mark
А	<u>2 colourless solutions</u> ✓ mixed to form a <u>yellow</u> precipitate ✓ (accept solid).	/2
	We know it was a yellow <i>solid</i> because the solution was no longer see-through (or "clear").	
В	A <u>purple solution</u> ✓ was added dropwise to a <u>colourless</u> <u>solution</u> ✓. The purple solution was <u>decolourised</u> ✓ (or you can say "the purple solution went colourless").	/3
С	A <u>colourless liquid</u> (or solution) was added to an <u>orange</u> <u>solution</u> . On heating in the hot water bath, the <u>solution</u> went from orange <u>to green</u> .	/3
D	A <u>white solid</u> was added to a <u>colourless solution</u> . <u>Effervescence</u> occurred, the (<u>white</u>) <u>solid disappeared</u> and a colourless solution remained.	/7
	The <u>colourless gas</u> \checkmark produced was bubbled through a <u>colourless solution</u> \checkmark of limewater. A <u>white precipitate</u> formed \checkmark .	
	Note to record the observations in both test tubes.	
	You may have been taught to say the "limewater went cloudy". The cloudiness is due to the formation of a white solid (calcium carbonate), so should be noted as a white precipitate. You may have correctly deduced that this result means carbon dioxide has been produced. However this is a <i>deduction</i> , not an <i>observation</i> , so is not relevant for this exercise.	
E	A <u>colourless solution</u> ✓ was added to a <u>pale blue</u> <u>solution</u> ✓. The solution went a darker blue, then a <u>pale</u> <u>blue precipitate (or "solid") was formed</u> ✓ on shaking. On further addition of the colourless solution, the <u>pale</u> <u>blue precipitate dissolved</u> ✓ to form a <u>darker blue</u> <u>solution</u> ✓.	/5

Key point is to record colour and state of the chemicals, at the start, the end and the middle (if interesting!). For this exercise, we will accept "liquid" rather than "solution" as you don't know whether the substances have been dissolved in water.

 \checkmark One mark per observation – remember both colour and state are needed

NB "clear" is NOT a substitute for "colourless"

[Total: 20]