

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives

Textbook: Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

Example 1 Make t the subject of the formula v = u + at.

v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by <i>a</i> .

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

$r = 2t - \pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side.
$r = t(2 - \pi)$ $t = \frac{r}{2 - \pi}$	 2 Factorise as t is a common factor. 3 Divide throughout by 2 - π.

Example 3 Make *t* the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t	2 Get the terms containing <i>t</i> on one side and everything else on the other
2r = 13t	side and simplify.
$t = \frac{2r}{13}$	3 Divide throughout by 13.

Make t the subject of the formula $r = \frac{3t+5}{t-1}$. Example 4

$$r = \frac{3t+5}{t-1}$$

$$r(t-1) = 3t+5$$

$$rt - r = 3t+5$$

$$rt - 3t = 5 + r$$

$$t(r-3) = 5 + r$$

$$rt - r - 3t + 5$$

$$rt - 3t = 5 + t$$

$$t(r-3) = 5 + i$$

$$t = \frac{5+r}{r-3}$$

- Remove the fraction first by multiplying throughout by t - 1.
- **2** Expand the brackets.
- **3** Get the terms containing *t* on one side and everything else on the other
- Factorise the LHS as t is a common factor.
- 5 Divide throughout by r 3.

Practice

Change the subject of each formula to the letter given in the brackets.

1
$$C = \pi d$$
 [d]

2
$$P = 2l + 2w$$
 [w]

$$3 D = \frac{S}{T} [T]$$

$$4 p = \frac{q-r}{t} [t]$$

4
$$p = \frac{q-r}{t}$$
 [t] **5** $u = at - \frac{1}{2}t$ [t] **6** $V = ax + 4x$ [x]

$$6 \qquad V = ax + 4x \quad [x]$$

7
$$\frac{y-7x}{2} = \frac{7-2y}{3}$$
 [y] 8 $x = \frac{2a-1}{3-a}$ [a] 9 $x = \frac{b-c}{d}$ [d]

8
$$x = \frac{2a-1}{3-a}$$
 [a]

$$9 x = \frac{b-c}{d} [d]$$

10
$$h = \frac{7g - 9}{2 + g}$$
 [g]

11
$$e(9+x)=2e+1$$
 [e]

11
$$e(9+x) = 2e+1$$
 [e] **12** $y = \frac{2x+3}{4-x}$ [x]

Make *r* the subject of the following formulae.

$$\mathbf{a} \qquad A = \pi r^2$$

$$\mathbf{b} \qquad V = \frac{4}{3}\pi r^3$$

$$P = \pi r + 2i$$

a
$$A = \pi r^2$$
 b $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

$$\mathbf{a} \qquad \frac{xy}{z} = \frac{ab}{cd}$$

$$\mathbf{b} \qquad \frac{4\pi cx}{d} = \frac{3z}{py^2}$$

- 15 Make $\sin B$ the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$
- Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 2ac \cos B$.

Extend

17 Make x the subject of the following equations.

$$\mathbf{a} \qquad \frac{p}{q}(sx+t) = x-1$$

$$\mathbf{b} \qquad \frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$$