

Unit 2 - Programming

Keywords
Variables:

• A box in which data may be stored

• Content changes as the program runs.

• Different types e.g. string, decimal, etc.
Assignment:

• The process for changing the data stored in a variable

• Copies a value into a memory location

• Different values may be assigned to a variable at different times
during the execution of a program.

• Each assignment overwrites the current value with a new one.
Constants:

• Data does not change as the program runs

• Used to reference known values such as pi
Inputs:

• May come from the user, a file or elsewhere in a modular program

• Usually treated as text even if containing numbers
Outputs:

• The end result of the program

• May be displayed on the screen, written to a file, or sent to a device
Operators:

• Used to manipulate and compare data

Sequencing
• Breaking down complex tasks into simple

steps.

• The order of steps matter

• Step by step progress through a program

• Benefits
o Each line follows the next.
o Can create simple programs very quickly.
o Easy to follow for a small program.

• Disadvantages
o Not very efficient.
o Difficult to follow with large programs.
o Hard to maintain.

Operators
Arithmetic Operators

+ Addition

- Subtraction

* Multiplication

/ Division

MOD
Modulus (the remainder
from a division, e.g. 12
MOD 5 gives 2)

DIV
Quotient (integer division,
e.g. 21 DIV 5 gives 4)

^
Exponentiation (to the
power of, e.g. 3^3 gives 27)

Comparison Operators

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
Boolean Operators
AND - two conditions must be met for
the statement to be true
OR - at least one condition must be
met for the statement to be true
NOT – inverts the result, e.g. NOT(A
AND B) will only be false when both A
and B are true

Iteration
• Running through or ‘iterating’

through a set of steps several times.

• Also known as looping

• Count Controlled (Definite) iteration
o Repeats the same code a set

number of times
o Uses a variable to track how

many times the code has been
run

o This variable can be used in the
loop

o At the end of each iteration the
variable is checked to determine
if the code should be run again

o FOR sets how many times the
code should be repeated

o NEXT tells the code to return to
the start of the loop

o STEP sets how the variable
should increment

• Condition Controlled (Indefinite)
Iteration
o Uses a condition to determine

how many times code should be
repeated

o While loops will run whilst a
condition is met and use the
statements WHILE and
ENDWHILE

o Repeat loops will run until a
condition is met and use the
statements REPEAT and UNTIL

FOR count = 2 to 10 STEP 2

OUTPUT count * 3

NEXT count

count = 0

WHILE count < 6

 print(“Hello World”)

 count = count + 1

ENDWHILE

Selection
• Allows the program to make decisions

• Uses conditions to change the flow of the program

• Selections may be nested one inside another

• IF statements perform comparisons sequentially and
so the order is important

• SELECT CASE has less typing but is less flexible

Data Types
• Integers – whole numbers e.g. 27

• Reals – numbers containing decimals e.g.
56.2

• Boolean – TRUE or FALSE

• Character – An alphanumeric character e.g. a

• Strings – One or more alphanumeric
characters e.g. hello

String Manipulation

• stringname.length – returns the length of a string

• stringname.upper – converts the string to uppercase
string = “John”
string.length The length of the string 4
string.upper Convers to upper case JOHN
string.lower Converts to lower case john
string.substring(1,2) Returns part of the

string
oh

string.left(3) Returns from the left of
the string

Joh

string.right(2) Returns from the right
hand side of the string

hn

string+string Concatenates or joins
strings

JohnJohn

Arrays

• An ordered collection of related
data

• Each element in the array has a
unique index, usually starting at
0

• All elements must be the same
type of data

• Arrays are usually a fixed size

• 1D arrays are similar to a simple
list, each element needs a single
index number

• 2D arrays are similar to tables,
with each element needing two
index numbers

• 2D arrays are usually used to
store properties of objects, with
objects in rows and properties in
columns

• Fruits[1] references element 1 in
the 1D Fruits array

• Tools[0,2] references element
0,2 in the Tools array

Random Numbers
• Many different applications in computer programs from simulating dice in computer

games, to cryptography

• Depending on the language we may specify just the maximum number assuming
starting from 1 (e.g. roll = random(5)) or the first and last possible values (e.g. roll =
(3,9))

• In many cases our desired output may not be a number and so we must then use
selection, such as an IF or CASE statement, to convert the number into an actual choice

• We can also use the random number to select a random element from an array. This is
more efficient then writing lots of IF statements.

Subroutines (Procedures and functions)

• Used to save time and simplify code

• Allows the same code to be used several times without having to
write it out each time

• Procedures are sets of instructions stored under a single name

• Functions will always return a value to the main program

• Parameters are values passed into a sub program. These are
referred to as arguments when calling the sub program

• Both procedures and functions can accept parameters

• The subroutine can return an output back to the main program to
allows the result of the subroutine to be used in the main program.

• This is done using the Output ‘return value’ code in a subroutine.

• Variables created within a subroutine are called Local Variables,
they only exist whilst the subroutine is running.

• They are only accessible to that subroutine and not to other
subroutines or the main program.

• This makes the code easier to debug.

• This improves efficiency since the variable does not exist when
the subroutine is not running, freeing up memory.

• Global variables can be used anywhere within the code.

• Because they can be altered anywhere in the program they are
harder to troubleshoot.

Types of Error
A program with a syntax error will not
run. A program with a logic error will
run but it will not perform as expected.
Syntax Errors
When the code does not follow the syntax
rules of the programming language used.
This stops the program from running.
Examples:

• Misspellings or typos

• Using a variable before it has been
declared

• Missing or incorrect use of brackets
Logic Errors
The program runs but does not do what it
should.
Examples:

• Incorrectly using logical or Boolean
operators

• Creating infinite loops

• Incorrectly using brackets in calculations
Using the same variable name at different
points for different purposes

Testing
• Newly written programs

often contains bugs which
stop them working properly.

• Testing allows the
programmer to locate and
remove these bugs, making
sure the program meets its’
needs.

• Different types of data will
need to be entered into the
program to test it is working
correctly.

• This data should cover a
range of different data which
the program might have to
deal.

• It should cover possible
data, which is normal and
allowed, and impossible,
which is not allowed.

• Normal Data – is typical
data that the program is
likely to encounter and
should be able to process
without error.

• Boundary Data – is data at
the limit of what the program
will and will accept.

• Erroneous Data – is data
which is not valid.

Data Validation
• Users may enter incorrect data.

• Computer programs should be able to check
for this and take appropriate action.

• Validation applies rules to data, only data
which meets the rules is allowed.

• This reduces the risk that an incorrect input
will crash the program.

• Validation does not ensure that the data is
correct, but that it is in the correct format.

• We can use comparison and string
manipulation operators combined with
selection and subroutines to implement
validation.

• Range Check – makes sure that the data is
within a certain range, this is usually used
for numbers and dates

• Length Check – makes sure the data is the
correct length, and not too long or short.

• Presence Check - makes sure a value has
actually been entered. For example, an
email address must be entered to sign up
for a newsletter.

• Format Check – makes sure the data is in
the correct format.

• Type Check – Makes sure the data is of the
correct data type

Authentication
• Confirms the user is who they say they are

• Commonly accomplished by asking the user
to enter a username and password.

• The username and password are stored
persistently, such as in a text file.

