
Start or End Process

Input or

Output
Decision

Subprogram

YES

NO

Unit 1 – Fundamentals of Algorithms

Key Terms

• Abstraction
- Using symbols and variables. to represent a real-

world problem with a computer program.
- Removing unnecessary elements
- Example - a program is to be created to let users

play chess against the computer.
▪ Board is created as an array(s).
▪ Pieces are objects that have positions on the

board
▪ The shape and style of the pieces may not be

required.

• Decomposition
- Breaking down large problems into a set of smaller

parts.
▪ Smaller problems are easier to solve
▪ Each part can be solved independently
▪ Each part can be tested independently
▪ The parts are combined to produce the full

problem.
- There are usually several different approaches, and

not one single right way to do this.

Pseudocode

• Uses short English words and
statements to describe an
algorithm.

• Generally looks a little more
structured than normal English
sentences.

• Flexible.

• Less precise than a programming
language.

IF Age is equal to 14 THEN

Stand up

ELSE Age is equal to 15 THEN

Clap

ElSE Age is equal to 16 THEN

Sing a song

ELSE

Sit on the floor

END

Trace Tables

• Tests algorithms for logic errors which
occur when the algorithm is executed.

• Simulates the steps of algorithm.

• Each stage is executed one at a time
allowing inputs, outputs, variables, and
processes to be checked for the correct
value at each stage.

X = 3
Y = 1
while X > 0
 Y = Y + 1
 X = X - 1
print(Y)

Stage X Y Output

1 3 1

2 2

3 2

4 3

5 1

6 4

7 0

8 4

Searching Algorithms
Linear Search
1. Check the first value
2. If it is desired value

- Stop
3. Otherwise check the second value
4. Keep Going until all elements have been checked

or the value is found
Binary Search
1) Put the list in order.
2) Take the middle value.
3) Compare it to the desired value.

a) If it is the desired value.
i) Stop.

b) If it is larger than the desired value.
i) Take the list to the left of the middle value.

c) If it is smaller than the desired value.
i) Take the list to the right of the middle

value.
4) Repeat step 3 with the new list.

Sorting Algorithms
Bubble Sort
1) Take the first element and second element
2) Compare the two

a) If element 1 > element 2
i) Swap then

b) Otherwise
i) Do nothing

c) Move to the next pair in the list
d) If there are no more elements return to step (1)
e) Otherwise, return to step (2)

3) Repeat until you have worked through the whole list without making any
changes

Merge Sort
1) Split the list into individual elements.
2) Merge the elements together in pairs, putting the smallest element first.
3) Merge two pairs together, putting the smallest first.
4) Keep merging until all pairs are in order.

What is an Algorithm

• An algorithm is a series of steps which can be followed
to complete a task.

• A computer program may use an algorithm.

• A computer program and an algorithm are not the
same thing.

• Algorithms help to work out the steps needed to solve
a given problem.

• This helps us plan how to write a computer program.

• An algorithm will always finish and return an answer or
perform a series of tasks that it was supposed to.

Flowcharts

• Created to represent an algorithm.

• Show the data that is input, and output.

• Show processes that take place.

• Show any decisions and repetitions that take place.

• Lines show flow through the chart.

• Shapes represent different functions

Algorithm Efficiency

• Several different algorithms can
solve the same problem

• Efficiency allows us to compare two
different algorithms that solve the
same problem.

• A more efficient algorithm is a better
choice.

• The quicker the algorithm can
complete its task, the more efficient
it is.

• For example, an algorithm that can
be executed in 10 instructions, is
more efficient than one which takes
25 instructions.

Comparing Algorithms

 Linear Search Binary Search

Pros • Works with unsorted lists

• Not affected by changes to the list

• Works well for small lists

• More efficient

• Efficient for large lists

Cons • Slower

• Inefficient for large lists

• Does not work with unsorted
lists

 Bubble Sort Merge Sort

Pros • Simplest and easiest to code

• Uses less memory

• Far more efficient and faster

• Consistent running time

Cons • Slower with larger lists

• Inefficient and slow

• Uses more memory

• More complexed to program

Determining The Purpose of
Algorithms

• There are several ways to determine
the purpose of an algorithm.

• We can dry run the algorithm, by
assigning values to its inputs, and
working through to see what
happens.

• Trace Tables allow us to record
these values as the algorithm is run.

• Visual Inspection involves simply
looking at the algorithm to determine
its purpose.

• Sometimes the algorithm may follow
a standard pattern which we can
recognise.

• With shorter or simpler algorithms,
the purpose may be obvious by
simply looking at it.

An Example Algorithm
This algorithm, written in
pseudocode, follows a simple pattern
for working through each letter of an
input to determine if it matches a
predefined word. This might form part
of a hangman game

guess ← USERINPUT
FOR i ← 0 TO LEN(word)
 IF word[i] = guess THEN
 OUTPUT “found”
 ENDIF
ENDFOR

