Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

• $a^m \times a^n = a^{m+n}$

•
$$\frac{a^m}{a^n} = a^{m-n}$$

- $(a^m)^n = a^{mn}$
- $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

•
$$a^{-m} = \frac{1}{a^m}$$

• The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$.

Examples

Example 1 Evaluate 10⁰

	Any value raised to the power of zero is equal to 1
--	---

Example 2 Evaluate $9^{\frac{1}{2}}$

Example 3 Evaluate $27^{\frac{2}{3}}$

$$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^{2}$$

$$= 3^{2}$$

$$= 9$$

$$1 \text{ Use the rule } a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m}$$

$$2 \text{ Use } \sqrt[3]{27} = 3$$

Example 4	Evaluate 4^{-2}					
	$4^{-2} = \frac{1}{4^2}$	1 Use the rule $a^{-m} = \frac{1}{a^m}$				
	$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$	2 Use $4^2 = 16$				
Example 5	Simplify $\frac{6x^5}{2x^2}$					
	$\frac{6x^5}{2x^2} = 3x^3$	$6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to				
		$6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to give $\frac{x^5}{x^2} = x^{5-2} = x^3$				
Example 6	Simplify $\frac{x^3 \times x^5}{x^4}$					
	$\frac{x^3 \times x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4}$	1 Use the rule $a^m \times a^n = a^{m+n}$				
	$= x^{8-4} = x^4$	2 Use the rule $\frac{a^m}{a^n} = a^{m-n}$				
Example 7	Write $\frac{1}{3x}$ as a single power of x					
	$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the				
		fraction $\frac{1}{3}$ remains unchanged				
Example 8	Write $\frac{4}{\sqrt{x}}$ as a single power of x					
	$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}} = 4x^{-\frac{1}{2}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$				
	$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$				

Practice

1	Evaluate. a 14^0	b	3 ⁰	c	5 ⁰	d	x^0
2	Evaluate. a $49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	c	$125^{\frac{1}{3}}$	d	$16^{\frac{1}{4}}$
3	Evaluate. a $25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	c	$49^{\frac{3}{2}}$	d	$16^{\frac{3}{4}}$
4	Evaluate. a 5 ⁻²	b	4 ⁻³	с	2-5	d	6 ⁻²
5	Simplify. a $\frac{3x^2 \times x^3}{2x^2}$	b	$\frac{10x^5}{2x^2 \times x}$				
	$\mathbf{c} \frac{3x \times 2x^3}{2x^3}$	d	$\frac{7x^3y^2}{14x^5y}$		Watch out!		
	$\mathbf{e} \frac{y^2}{y^{\frac{1}{2}} \times y}$	f	$\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$		Remember that any value raised to the power of zero		
	$\mathbf{g} = \frac{\left(2x^2\right)^3}{4x^0}$	h	$\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$		is 1. This is the rule $a^0 = 1$.	ie	
6	Evaluate.						
	a $4^{-\frac{1}{2}}$	b	$27^{-\frac{2}{3}}$		$9^{-\frac{1}{2}} \times 2^{3}$		
	d $16^{\frac{1}{4}} \times 2^{-3}$	e	$\left(\frac{9}{16}\right)^{-\frac{1}{2}}$	f	$\left(\frac{27}{64}\right)^{-\frac{2}{3}}$		
7	Write the following as a	single					
	a $\frac{1}{x}$	b	$\frac{1}{x^7}$	c	$\sqrt[4]{x}$		
	d $\sqrt[5]{x^2}$	e	$\frac{1}{\sqrt[3]{x}}$	f	$\frac{1}{\sqrt[3]{x^2}}$		

8 Write the following without negative or fractional powers.

a	x^{-3}	b x^0	c	$x^{\frac{1}{5}}$
d	$x^{\frac{2}{5}}$	e $x^{-\frac{1}{2}}$	f	$x^{-\frac{3}{4}}$

Write the following in the form ax^n .					
a 5-	\sqrt{x}	b	$\frac{2}{x^3}$	c	$\frac{1}{3x^4}$
d $\frac{2}{\sqrt{2}}$	$\frac{2}{\overline{x}}$	e	$\frac{4}{\sqrt[3]{x}}$	f	3

Extend

9

10 Write as sums of powers of *x*.

a
$$\frac{x^5 + 1}{x^2}$$
 b $x^2 \left(x + \frac{1}{x} \right)$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$

